Integration with Matplotlib for Custom Plots#
Visualizing data is a key step in data analysis, providing insights that are not apparent from raw data alone. Pandas integrates smoothly with Matplotlib, a popular plotting library in Python, to offer versatile options for data visualization. This chapter will show how to create custom plots using Pandas and Matplotlib.
Custom Plotting#
Pandas' plotting capabilities are built on Matplotlib, allowing for straightforward generation of various types of plots directly from DataFrame and Series objects.
Line Plot#
Here's how to create a simple line plot displaying trends over a series of values:
import pandas as pd
import matplotlib.pyplot as plt
# Sample data
data = {'Year': [2010, 2011, 2012, 2013, 2014],
'Sales': [100, 150, 200, 250, 300]}
df = pd.DataFrame(data)
# Plotting
df.plot(x = 'Year', y = 'Sales', kind = 'line')
plt.title('Yearly Sales')
plt.ylabel('Sales')
plt.show()
Histogram#
Histograms are great for visualizing the distribution of numerical data:
# Sample data
data = {'Grades': [88, 92, 80, 89, 90, 78, 84, 76, 95, 92]}
df = pd.DataFrame(data)
# Plotting a histogram
df['Grades']\
.plot(kind = 'hist',
bins = 5,
alpha = 0.7)
plt.title('Distribution of Grades')
plt.xlabel('Grades')
plt.show()
Scatter Plot#
Scatter plots are used to observe relationships between variables:
# Sample data
data = {'Hours': [1, 2, 3, 4, 5],
'Scores': [77, 78, 85, 93, 89]}
df = pd.DataFrame(data)
# Creating a scatter plot
df.plot(kind = 'scatter', x = 'Hours', y = 'Scores')
plt.title('Test Scores by Hours Studied')
plt.xlabel('Hours Studied')
plt.ylabel('Test Scores')
plt.show()
Bar Chart#
Bar charts are useful for comparing quantities corresponding to different groups:
# Sample data
data = {'Bars': ['A', 'B', 'C', 'D'],
'Values': [10, 15, 7, 10]}
df = pd.DataFrame(data)
# Creating a bar chart
df.plot(kind = 'bar',
x = 'Bars',
y = 'Values',
color = 'blue',
legend = None)
plt.title('Bar Chart Example')
plt.ylabel('Values')
plt.show()
These examples illustrate how to integrate Pandas with Matplotlib to create informative and visually appealing plots. This integration is vital for analyzing trends, distributions, relationships, and patterns in data effectively.