References#
Cheatsheets#
- Foundations:
- Data Manipulation:
- Data Visualization:
- Machine Learning Libraries:
- Data Analysis Techniques:
- Advanced Topics:
- Big Data Technologies:
- Other Useful Skills:
- Databases:
Books#
-
Peng, R. D. (2015). Exploratory Data Analysis with R. Springer.
-
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer.
-
Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big Data, 1(1), 51-59.
-
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing. Cambridge University Press.
-
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. Springer.
-
Wickham, H., & Grolemund, G. (2017). R for data science: import, tidy, transform, visualize, and model data. O'Reilly Media, Inc.
-
VanderPlas, J. (2016). Python data science handbook: Essential tools for working with data. O'Reilly Media, Inc.
SQL and DataBases#
-
MySQL: https://www.mysql.com/
-
PostgreSQL: https://www.postgresql.org/
-
DuckDB: https://duckdb.org/
Software#
-
Python: https://www.python.org/
-
The R Project for Statistical Computing: https://www.r-project.org/
-
Tableau: https://www.tableau.com/
-
PowerBI: https://powerbi.microsoft.com/
-
Hadoop: https://hadoop.apache.org/
-
Apache Spark: https://spark.apache.org/
-
Azure: https://azure.microsoft.com/
-
TensorFlow: https://www.tensorflow.org/
-
scikit-learn: https://scikit-learn.org/
-
Apache Kafka: https://kafka.apache.org/
-
Apache Beam: https://beam.apache.org/
-
spaCy: https://spacy.io/
-
NLTK: https://www.nltk.org/
-
NumPy: https://numpy.org/
-
Pandas: https://pandas.pydata.org/
-
Scikit-learn: https://scikit-learn.org/
-
Matplotlib: https://matplotlib.org/
-
Seaborn: https://seaborn.pydata.org/
-
Plotly: https://plotly.com/
-
Jupyter Notebook: https://jupyter.org/
-
Anaconda: https://www.anaconda.com/
-
TensorFlow: https://www.tensorflow.org/
-
RStudio: https://www.rstudio.com/