References#

Cheatsheets#

Books#

  • Peng, R. D. (2015). Exploratory Data Analysis with R. Springer.

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer.

  • Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big Data, 1(1), 51-59.

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing. Cambridge University Press.

  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. Springer.

  • Wickham, H., & Grolemund, G. (2017). R for data science: import, tidy, transform, visualize, and model data. O'Reilly Media, Inc.

  • VanderPlas, J. (2016). Python data science handbook: Essential tools for working with data. O'Reilly Media, Inc.

SQL and DataBases#

Software#